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Abstract

Strength of ship plates plays a significant role in the ultimate strength analysis of ship

structures. In recent years several authors have proposed simplified analytical methods to
calculate the ultimate strength of unstiffened plates. The majority of these investigations deal
with plates subjected to longitudinal compression only. For real ship structural plating, the

most general loading case is a combination of longitudinal stress, transverse stress, shear stress
and lateral pressure. In this paper, the simplified analytical method is generalized to deal with
such combined load cases. The obtained results indicate that the simplified analytical method

is able to determine the ultimate strength of unstiffened plates with imperfections in the form
of welding-induced residual stresses and geometric deflections subjected to combined loads.
Comparisons with experimental results show that the procedure has sufficient accuracy for
practical applications in design. # 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Unstiffened plates; Ultimate strength; Elastic large deflection analysis; Rigid–plastic analysis;

Transverse compression; Lateral pressure

1. Introduction

A ship structure can be regarded as an assemblage of continuous stiffened plates
with equally spaced longitudinal stiffeners of approximately the same size. The main
load component for the deck structure, the bottom structure and longitudinal
bulkheads close to the deck and bottom is axial compression. Therefore, in standard
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Nomenclature

a plate length
at breadth of tensile residual stress in the x direction
Aij0 component of initial deflection function
Akl component of total deflection function
b plate width
bt breadth of tensile residual stress in the y direction
D plate bending stiffness ð¼ Et3=12ð1 � n2ÞÞ
E Young’s modulus
F Airy’s stress function
I number of half-waves in the plate length direction for initial deflection
J number of half-waves in the plate width direction for initial deflection
K maximum number of half-waves tried for determining the final total

deflection in the plate length direction
L maximum number of half-waves tried for determining the final total

deflection in the plate width direction
p lateral pressure
t plate thickness
w total deflection function
wp the deflection due to lateral pressure
w0 initial deflection function
w0max maximum value of initial deflection function
a aspect ratio ð¼ a=bÞ
b plate slenderness ð¼ ðb=tÞ

ffiffiffiffiffiffiffiffiffiffiffi
s0=E

p
Þ

g ratio of b to t
n Poisson’s ratio
x longitudinal normalized residual stress
Z transverse normalized residual stress
z the angle of the hinge line I
fu normalized ultimate strength of plate ð¼ su=s0Þ
fx �sx av=s0 (positive value for compression)
fy=x the ratio between the transverse and longitudinal in-plane stresses
fv normalized value of pressure ð¼ pE=s2

0Þ
cij0 normalized value of Aij0 ð¼ Aij0=tÞ
c0max normalized maximum value of initial deflection function ð¼ w0max=tÞ
ckl normalized value of Akl ð¼ Akl=tÞ
s0 yield stress
src compressive residual stress (as negative value)
srt tensile residual stress (¼ s0, as positive value)
su ultimate strengths of plate
sx av average axial stress in the xdirection (negative value for compression)
sy av average axial stress in the ydirection (negative value for compression)
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design analyses of the ultimate hull girder bending moments, the only load
components considered are longitudinal stresses. However, the external bottom
plating and the lower parts of the side shells can in addition be subjected to relatively
high external lateral pressure and the inner bottom and inner longitudinal bulkheads
to lateral pressure loads from the cargo. These lateral pressures also either directly or
through bending in web frames introduce transverse in-plane loads on the plate
fields. As an example we can consider the relative magnitudes of the secondary
stresses in the longitudinal bulkhead in a 100,000 DWT tanker converted into a
floating production and storage facility (FPSO), see Fig. 1. A detailed linear finite
element analysis of this tanker structure shows that the panels indicated by an arrow
in Fig. 1 with dimensions 840� 4765� 15 mm are subjected to in-plane stresses
where the ratio between the transverse (vertical direction) and the longitudinal in-
plane stresses equals sy=sx ¼ 0:45. The source of these high compression stresses in
the vertical direction is the weight of the production equipment arranged on the deck
and outward bending of the wing tank. In addition, the plates are subjected to the
tank pressure. It is obvious that for the design of the longitudinal bulkhead it is
necessary to include the biaxial stress state of the plating in the analysis. It is also
clear that the contribution to the longitudinal hull girder strength of these
longitudinal bulkheads is reduced due to the secondary stresses. It is the purpose
of the present paper to derive a design oriented procedure which can be used to
quantify the ultimate strength of plates subjected to bi-axial compression in addition
to lateral pressure.

Fig. 1. A typical cross section of an FPSO.
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The ultimate strength of ship plates is very important from the design and safety
viewpoint because the collapse loads of plates can often act as an indicator of the
ultimate strength of the whole stiffened panel in ship structures [1]. The problem has
been addressed for centuries for the general plated structures and for several decades
even with regard to ship structures [2,3]. The methods which have been proposed can
be divided into: (1) finite element methods, (2) experiments, (3) empirical formulae
which are based either on numerical or experimental results and (4) analytical or
semi-analytical approaches. While most of the researches studied longitudinal
compression only, some of them did consider the combined load cases, e.g. [4–7], but
they used empirical approaches based on either FE or experimental results. In 1977
and 1979, a simplified analytical method was proposed by Fujita et al. [8] which
combines the elastic large deflection theory and the rigid–plastic analysis based on
admissible collapse mechanisms. In this method, the ultimate compressive strength is
determined as the intersection value between the elastic and the rigid–plastic
deflection solution, see Fig. 2a. However, if the shape of the initial deflection
is complex, much computer time is still needed for the elastic large deflection analysis
since a number of terms should be selected for describing the actual geometric
configuration of the welding-induced initial imperfection [9].

In order to further reduce the computer time, Paik and Pedersen [9] made the
assumption that the elastic large deflection analysis can be performed individually
for each Fourier component of the deflection function. The ultimate compressive
strength is then determined as the minimum intersection value among those
estimated for individual components of the initial deflection function, see Fig. 2b.

In Ref. [9], it was assumed that for a given initial deflection component, the total
deflection function always takes the same form as that of initial deflection
component. In Ref. [10] Cui and Mansour argued that this may not always be the
case, in particular when the amplitude of that initial deflection component is small.
By removing this assumption, the simplified method was improved [10] (see Fig. 2c)
and they further studied the effects of welding-induced residual stresses and the
initial deflection shape and amplitude based on the simplified method [11].

However, all the above mentioned applications of the simplified analytically based
method dealt with longitudinal stresses only. This loading condition is generally not

Fig. 2. Difference between procedures applied by Fujita et al. [8], Paik and Pedersen [9] and Cui and

Mansour [10] to determine the ultimate strength.
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sufficiently representative for ship plating, as discussed above. Therefore,
in this paper, the simplified analytical method developed in Refs. [9–11] is
further generalized to deal with combinations of longitudinal stresses,
transverse stresses and lateral pressure. Of course, in many situations shear stresses
may also exist. However, shear stresses have not been considered in the present
work.

2. Basic theory

The problem studied in this paper is a simply supported unstiffened plate subjected
to a combination of longitudinal compressive stress, transverse compressive stress
and lateral pressure, see Fig. 3. The basic approach adopted here is similar to that
presented by Cui and Mansour in [10] but in the present paper a double Fourier
series form is applied instead of single Fourier series for describing the welding-
induced initial imperfection. Furthermore, the residual stresses in both the
longitudinal and the transverse directions are considered.

2.1. Basic assumptions

The basic assumptions made in this development can be summarized as follows:

(1) The lateral pressure is assumed to be so small that small deflection theory can
be applied to convert the lateral pressure into the deflection form. Although for the
strength calculation the plate is assumed simply supported along all four sides, the

Fig. 3. A simply supported rectangular plate subjected to combined loading.
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deflection induced by the lateral pressure alone will be close to the deflected shape of
a clamped plate due to continuity across the stiffeners. Therefore, the following
formula is used to approximate the deflection due to lateral pressure:

wp ¼ A0 1 � cos
2px
a

� �
1 � cos

2py
b

� �
: ð1Þ

Applying the energy method, the maximum deflection amplitude A0 can be
determined by

A0 ¼
pb4

Et3
3ð1 � n2Þ

p4

a4

ð3a4 þ 2a2 þ 3Þ
; ð2Þ

where a ¼ a=b is called the aspect ratio.
The deflection form given by Eq. (1) can be expanded into the following Fourier’s

series form:

wp ¼ t
XM
i¼1

XN
j¼1

cpði; jÞ sin
ipx
a

sin
jpy
b
; ð3Þ

where Cpði; jÞ is the normalized deflection component induced by lateral pressure.
Here

cpði; jÞ ¼
12fvb

4

ijp6
ð1 � n2Þð1 � cos ipÞð1 � cos jpÞ; ð4Þ

where

b ¼
b

t

ffiffiffiffiffi
s0

E

r
and fv ¼

pE

s2
0

: ð5Þ

This deflection will be added to the initial deflection induced by welding. Due to
the introduction of this simplification, the derived solution can only be applied to
load cases with small lateral pressure. For plates in ship structures this is most often
the case.

(2) The initial deflection configuration induced by welding and lateral pressure is
approximated by the following Fourier series function:

w0 ¼
XM
i¼1

XN
j¼1

Aij0 sin
ipx
a

sin
jpy
b
; ð6Þ

where M and N will be selected depending on the complexity of the initial deflection
shape.

(3) The elastic large deflection analysis and the rigid–plastic analysis are performed
individually for each component of the deflection function. The interaction effects
between deflection components are neglected.

(4) The initial deflection function with only one component from Eq. (6)
is given as

w0 ¼ Aij0 sin
ipx
a

sin
jpy
b

ð7Þ
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and for this initial deflection function, the total deflection function is assumed to take
the following form:

w ¼ Akl sin
kpx
a

sin
lpy
b
; ð8Þ

where k and l are determined by choosing the minimum intersection point. It may be
worth to point out here that l is an integer in this paper rather than the distance it
usually represents.

(5) The distributions of the residual stresses along the plate length and width are
idealized as shown in Fig. 4:

sry ¼

srytð¼ s0Þ; x 2 ð0; atÞ;

sryc; x 2 ðat; a� atÞ;

srytð¼ s0Þ; x 2 ða� at; aÞ;

8><
>: ð9Þ

srx ¼

srxtð¼ s0Þ; y 2 ð0; btÞ;

srxc; y 2 ðbt; b� btÞ;

srxtð¼ s0Þ; y 2 ðb� bt; bÞ;

8><
>: ð10Þ

where

at ¼
aZ

2ð1 þ ZÞ
; Z ¼ �

sryc
s0

; ð11Þ

bt ¼
bx

2ð1 þ xÞ
; x ¼ �

srxc
s0

: ð12Þ

(6) For the rigid–plastic deflection analysis, we consider two
modes of kinematically admissible collapse mechanisms which depend on the aspect
ratio.

(7) For each initial deflection component ði; jÞ, the deflection mode number ðk; lÞ is
to be determined by varying i from 1 to M and j from 1 to N and the set of ðk; lÞ
which has the lowest intersection value between the elastic large deflection solution
and the rigid–plastic solution for the applied stress is chosen, see Fig. 2c. The number
of modes M and N are subjectively chosen and generally M ¼ 11 and N ¼ 3 are
adequate for practical applications. Then the ultimate strength of the plate is

Fig. 4. Idealized welding-induced residual stress distribution.
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determined as the minimum intersection value in the load–deflection plane among
the response functions estimated for the individual components of the initial
deflection function.

2.2. Elastic large deflection analysis

The general differential equation and the process of deriving the elastic large
deflection solution are the same as in Ref. [10] and therefore these are omitted here.
The Airy’s stress function thus obtained is

Fðx; yÞ ¼
Ea2

32b2

l2

k2
cos

2kpx
a

A2
kl �

j2

i2
cos

2ipx
a

A2
ij0

� �

þ
Eb2

32a2

k2

l2
cos

2lpy
b

A2
kl �

i2

j2
cos

2jpy
b

A2
ij0

� �

þ
1

2
ðsx av þ srxÞy2 þ

1

2
ðsy av þ sryÞx2: ð13Þ

The final cubic equation can be written in the following form:

Sc3
kl þ Pckl þQ ¼ 0; ð14Þ

where all the parameters are expressed in non-dimensional form:

S ¼
k4

16a2
þ

l4a2

16
; ð15Þ

P ¼ �
k2i2dlj
16a2

þ
l2j2a2dik

16

� �
c2
ij0 þ

1

12ð1 � n2Þ
k2

a
þ l2a

� �2

�
fxb

2k2

p2
�

fy=xfxa
2b2l2

p2
�

a2b2l2

p3k
ð1 þ ZÞsin

kpZ
1 þ Z

�
b2k2

p3l
ð1 þ xÞsin

lpx
1 þ x

; ð16Þ

Q ¼ �
1

12ð1 � n2Þ
k2

a
þ l2a2

� �2

cij0dikdjl ; ð17Þ

where

g ¼
b

t
; fy=x ¼

sy av

sx av
; cij0 ¼

Aij0

t
; ckl ¼

Akl

t
; ð18Þ

fx ¼ �
sx av

s0
; fy=x ¼

sy av

sx av
: ð19Þ

When the initial deflection (including the lateral pressure) and residual stresses are
zero, then Eq. (14) has positive roots only when P50. From this condition, a critical
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value of b can be derived:

bcr ¼
ðk2 þ l2a2Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 � n2Þa2ðk2 þ fy=xa2l2Þ

q : ð20Þ

bcr is the lowest value of b that the plate will fail by buckling. If the transverse stress
is also zero, then bcr is reduced to the von Karman constant [10]. Furthermore, for a
given b and the condition that P ¼ 0, we can also derive the critical buckling strength
formula known from elastic small deflection theory:

fx cr ¼
p2ðk2 þ l2a2Þ2

12ð1 � n2Þa2b2ðk2 þ fy=xl
2a2Þ

: ð21Þ

2.3. Rigid–plastic solution

The general procedure for deriving the rigid–plastic solution is the same as
in Ref. [10]. Assuming a possible collapse mechanism and by equating the
internal energy WI to the external work WE , one can derive a rigid–plastic solution.
The general expressions for the internal energy and the external work are as
follows:

WI ¼
XN
n¼1

Z
ln

Mpn dyn dln; ð22Þ

WE ¼
XN
n¼1

Z
ln

Nnwn dyn dln þWp; ð23Þ

where Wp is the external work done by the lateral pressure, Mpn is the plastic bending
moment per unit length along the hinge line, dyn is the change of the angle along the
hinge line, Nn is the axial force per unit length along the hinge line and wn is the
deflection of the hinge line.

Two possible admissible collapse mechanisms are analyzed:
(1) a5k=l tan z.
For this case, the collapse pattern is shown in Fig. 5. The geometrical conditions at

collapse are

wI ¼ Akl 1 �
2l sin z

b
ln

� �
; wII ¼ Akl ;

dyI ¼
2l dAkl

b cos z
; dyII ¼

4l dAkl

b
:

The axial force and the bending moment per unit length along the hinge lines I and
II are calculated by

NI ¼ ðsx av sin2 zþ sy av cos2 zÞt;
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NII ¼ sy avt;

MpðzÞ ¼ mpðzÞ
s0t

2

4
:

The expression for mpðzÞ will be given later.
By substituting the above expressions for the geometric deflections and the force–

deflection relations into Eqs. (22) and (23), we can obtain the following formulas for
internal energy and the external work:

WI ¼ 4

Z b=2l sin z

0

MI dyI dlI þ
Z a=k�b=l tan z

0

MII dyII dlII

¼
MI dAkl

2 sin 2z
þ

MII dAkl

2

al

bk
�

1

tan z

� �
;

ð24Þ

WE ¼ 4

Z b=2l sin z

0

wINI dyI dlIn þ
Z a=k�b=l tan z

0

wIINII dyII dlIIn þWp

¼ 4
Akl

sin 2z
ðsx av sin2 zþ sy av cos2 zÞdAkl t

þ 4Akl
al

bk
�

1

tan z

� �
sy av dAkltþWp:

ð25Þ

The external work done by the lateral pressure is

Wp ¼
pb

6l

3a

k
�

b

l

1

tan z

� �
dAkl : ð26Þ

Fig. 5. The first assumed admissible collapse mechanism.
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Using the upper bound theorem of plasticity WE ¼ WI and non-dimensionalizing
the resulting expression we can derive the following rigid–plastic deflection solution:

Rckl ¼ T ; ð27Þ

where

R ¼
16

sin 2z
ðfx sin2 zþ fy=xfx cos2 zÞ þ 16

al
k
�

1

tan z

� �
fy; ð28Þ

T ¼
mI

2 sin 2z
þ

al
k
�

1

tan z

� �
mII

2
�

b2fv

6l

3a
k
�

1

l tan z

� �
: ð29Þ

(2) a4k=l tan z.
For this case, the collapse pattern is shown in Fig. 6. The geometrical conditions at

collapse are

wI ¼ Akl 1 �
2k cos z

a
ln

� �
; wIII ¼ Akl ;

dyI ¼
2k dAkl

a sin z
; dyIII ¼

4k dAkl

a
:

The axial force and the bending moment along the hinge lines are given by

NI ¼ ðsx av sin2 zþ sy av cos2 zÞt; NIII ¼ sx avt;

MpðzÞ ¼ mpðzÞ
s0t

2

4
:

Fig. 6. The second assumed admissible collapse mechanism.

W. Cui et al. / Marine Structures 15 (2002) 75–97 85



By substituting these expressions into Eqs. (22) and (23), we can obtain the following
formulas for internal energy and the external work:

WI ¼ 4

Z a=2k cos z

0

MI dyI dlI þ
Z b=l�a tan z=k

0

MIII dyIIIdlIII

¼
MI dAkl

2 sin 2z
þ

MIII dAkl

2

bk

al
� tan z

� �
; ð30Þ

WE ¼ 4

Z a=2k cos z

0

wINI dyI dlIn þ
Z b=l�a tan z=k

0

wIIINIII dyIII dlIIIn þWp

¼ 4
Akl

sin 2z
ðsx av sin2 zþ sy av cos2 zÞdAkl t

þ 4Akl
bk

al
� tan z

� �
sx av dAkl tþWp; ð31Þ

Wp ¼
pa

6k

3b

l
�

a

k
tan z

� �
dAkl : ð32Þ

Using the condition WE ¼ WI and also non-dimensionalizing the expression we
can derive the following rigid–plastic solution:

Rckl ¼ T ; ð33Þ

where

R ¼
16

sin 2z
ðfx sin2 zþ fy=xfx cos2 zÞ þ 16

k

al
� tan z

� �
fx; ð34Þ

T ¼
mI

2 sin 2z
þ

k

al
� tan z

� �
mIII

2
�

ab2fv

6k

3

l
�

a tan z
k

� �
: ð35Þ

(3) As the final step in the rigid–plastic collapse analysis, we need to calculate the
plastic bending moment at collapse.

If we take a small element around the hinge line, its normal and shear stress
distributions shown in Fig. 7 can be calculated from the following relations:

s1 ¼ sx av sin2 xþ sy av cos2 x;

s2 ¼ sx av cos2 xþ sy av sin2 x;

t ¼ ðsx av � sy avÞsin z cos x:

Applying the von Mises yield criterion

s2
1 þ s2

2 � s1s2 þ 3t2 ¼ s2
0;

s1t

s1c
¼

s2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2

0 � 12t2 � 3s2
2

q
2

;
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where s1t is the tensile yield stress and s1c is the compression yield stress along the
hinge line

s1t ¼ s1tcþ s1cðt� cÞ; c ¼
s1 � s1c

s1t � s1c
t:

Thus the plastic bending moment for the hinge line is

MpðzÞ ¼ s1tc t�
c

2

� �
þ s1c

ðt� cÞ2

2
¼ mpðzÞ

s0t
2

4

¼
t2½s2

0 � ðsx av þ sy avÞ
2 þ sx avsy av


2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2

0 � 3ðss av sin2 zþ sy av cos2 zÞ2 � 12ðsx av � sy avÞ
2 sin2 z cos2 z

q :

ð36Þ

From Eq. (36) we can obtain the following expression by further introducing the
non-dimensional parameters:

mpðzÞ ¼
2½1 � ðfx þ fy=xfxÞ

2 þ fy=xf
2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � 3ðfx sin2 zþ fy=xfx cos2 zÞ2 � 12ðfx � fy=xfxÞ
2 sin2 z cos2 z

q :

ð37Þ

For simplicity, the angle of z is taken to be 458. In that case, the angles for hinge
lines I, II and III are 458, 08 and 908, respectively.

By substituting the respective angles of z into Eq. (36), we can obtain the detailed
expressions for mI, mII, mIII as follows:

mI ¼ mpð458Þ ¼
2½1 � ðfx þ fy=xfxÞ

2 þ fy=xf
2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � 0:75ðfx þ fy=xfxÞ
2 � 3ðfx � fy=xfxÞ

2
q ; ð38Þ

mII ¼ mpð08Þ ¼
2½1 � ðfx þ fy=xfxÞ

2 þ fy=xf
2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � 3f2
y=xf

2
x

q ; ð39Þ

Fig. 7. Stresses in an element along the hinge line.
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mIII ¼ mpð908Þ ¼
2½1 � ðfx þ fy=xfxÞ

2 þ fy=xf
2
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 � 3f2
x

q : ð40Þ

3. Validation

The above procedures have been coded in a small Fortran code and validated
through comparison with experimentally obtained collapse loads available in the
literature.

As a first example we re-analyzed the 33 cases given in Ref. [9] and almost identical
results have been obtained. This indicates that when the method degenerates to the
case of only longitudinal compression, it gives the same results as those of [9,10].

The second example comes from Ref. [12] in which three plates have been tested in
uniaxial compression. Since these plates are pin-jointed on the four sides, no residual
stresses and initial deformation are considered. The results are shown in Table 1.
Except for the second plate (No. 02), the agreement is very good. Furthermore, they
are all on the conservative side. The reason for the large discrepancy in the second
plate is that this plate has a large slenderness and in this case the collapse load is not
easily identified.

As a third example we have chosen to analyze the 31 plates from SSC-276 [13],
which have been tested in combined loading. The basic parameters are given in Table
2. Because the residual stresses and initial deflections were not given in this reference,
we assume they are of average level and can be approximated by using existing
empirical formulas.

Faulkner’s formula [14] is used to approximate the longitudinal residual stress:
x ¼ 2d=ðg� 2dÞ. In general d ¼ 324:5, while in this paper d ¼ 4.

Cui and Mansour’s formula [11] is used to calculate the initial deflection:

Ai1 ¼ w0max
0:765

i1:565
; where

w0max

t
¼

0:1b2; 14b42:5;

0:25b; 2:55b44:

(

Here, the effects of the transverse residual stresses and the initial deflection
components for j > 1 on the ultimate strength are neglected

For these 31 plates, we carried out a series of calculations using the combined
loading and then compared the results with those of experiments. Although some

Table 1

A comparison of the predicted results with experiments for panels in Ref. [12]

Panel a b g s0 (MPa) t (mm) Exp. Cal. Exp./Cal.

No. 01 0.6 2.9 71.463 330 12.44 0.6545 0.6451 1.0146

No. 02 0.389 4.87 120 330 11.43 0.5545 0.4513 1.2287

No. 03 1.743 2.61 61.8 358 14.17 0.7374 0.6808 1.0831
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discrepancies exist, in general, they agree reasonably well, see Table 2. The reason for
large discrepancies in some cases may be due to the approximation of residual
stresses and initial deflections. What have been assumed here are the average level of
the residual stresses and initial deflections and for some individual case, they could
have large differences due to the scatter of the residual stresses and initial deflections.
If the actual values of the residual stresses and initial deflections were available,
the predictions could be improved. Therefore, the predictions are regarded as
acceptable.

With all the different panels tested, it can be concluded that the method presented
in this paper can provide reasonable predictions to the ultimate strength of
unstiffened plates subjected to combined loading.

Table 2

Comparison of predicted results with experiments for panels with combined loads in Ref. [13] (average

levels of residual stresses and initial deflections assumed)

No. a b fy=x fv Cal. Exp. Exp./Cal.

1 3.0000 1.1000 0.0000 0.2000 0.9833 0.9340 0.9499

2 3.0000 1.1000 0.9790 0.0000 0.8148 0.5940 0.7290

3 3.0000 1.1000 0.3040 0.0000 1.0000 0.9820 0.9820

4 3.0000 1.8400 0.0000 0.2000 0.8734 0.7773 0.8900

5 3.0000 1.8400 0.2510 0.0000 0.8082 0.8060 0.9973

6 3.0000 1.8400 0.3830 0.0000 0.7119 0.6990 0.9819

7 3.0000 1.8400 0.8090 0.0000 0.4529 0.4306 0.9508

8 3.0000 1.8400 0.4750 0.0000 0.6534 0.5089 0.7788

9 3.0000 1.8400 0.5770 0.5660 0.3740 0.5204 1.3914

10 3.0000 2.5700 0.0000 0.2000 0.5761 0.5430 0.9425

11 3.0000 2.5700 0.7220 0.0000 0.3435 0.3900 1.1354

12 3.0000 2.5700 0.9580 0.0000 0.2720 0.2612 0.9603

13 3.0000 2.5700 0.5960 0.2050 0.2860 0.3930 1.3741

14 3.0000 2.5700 0.8960 0.1940 0.2112 0.2610 1.2358

15 3.0000 2.5700 0.8440 0.3020 0.1644 0.2610 1.5876

16 3.0000 3.3000 0.0000 0.2000 0.4049 0.4080 1.0077

17 3.0000 3.3000 0.0000 0.1980 0.4062 0.4110 1.0118

18 3.0000 3.3000 0.8020 0.2190 0.0905 0.2120 2.3425

19 3.0000 3.3000 0.8620 0.0000 0.2349 0.3188 1.3572

20 3.0000 3.3000 0.4680 0.2040 0.1605 0.4680 2.9159

21 3.0000 3.3000 0.7830 0.0000 0.2543 0.2130 0.8376

22 3.0000 3.3000 0.7960 0.2000 0.1108 0.2130 1.9224

23 3.0000 1.7400 0.8460 0.0450 0.4497 0.4065 0.9039

24 3.0000 1.7400 0.7650 0.0450 0.4881 0.4220 0.8646

25 3.0000 1.7400 0.0000 0.0900 0.8930 0.5895 0.6601

26 3.0000 4.0500 0.4980 0.0000 0.2818 0.2560 0.9084

27 3.0000 4.0500 0.5520 0.0300 0.2475 0.2270 0.9172

28 3.0000 4.0500 0.0000 0.0900 0.3328 0.3048 0.9159

29 3.0000 4.0500 0.1590 0.0000 0.3449 0.3826 1.1093

30 3.0000 4.0500 0.9370 0.0000 0.1819 0.1500 0.8246

31 3.0000 4.0500 0.3710 0.0000 0.3130 0.2547 0.8137

W. Cui et al. / Marine Structures 15 (2002) 75–97 89



4. Discussion on various factors affecting the ultimate strength

The effects of aspect ratio, slenderness, initial deflection shape and amplitude, the
residual stress along the width have been studied and they are found to be the same
as that reported in Ref. [11], so these results will not be repeated here. The residual
stress along the length has been found to have negligible influence on the ultimate
strength, see Fig. 8. This indicates that for longitudinally dominated compression,
the residual stresses induced by the welding in the transverse direction at the two
ends are insignificant which confirms the neglect of these stresses in most of the
methods. In this section, only those results which are unique to the present
development are reported.

4.1. Effect of transverse stress on the longitudinal ultimate strength

In the present study, it is assumed that the longitudinal compression is the
dominant applied load, so fy=x is less than 1. The effect of transverse compressive
loads on the longitudinal ultimate strength is shown in Figs. 8 and 9. From Fig. 9 it
can be seen that as the transverse stress increases, the longitudinal ultimate strength
decreases almost linearly. Fig. 10 gives a comparison for the present prediction with
the empirical formulas available in the literature [14–17]. It is seen that the agreement
is reasonably good.

4.2. Effect of lateral pressure on the longitudinal ultimate strength

The effect of lateral pressure on the longitudinal ultimate strength is given in
Fig. 11. It is seen that when the lateral pressure is small, it has a very small effect on
the longitudinal ultimate strength.

Fig. 8. Effect of transverse residual stress on the longitudinal ultimate strength.
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Fig. 9. Effect of transverse applied stress on the longitudinal ultimate strength.

Fig. 10. A comparison of the present prediction with empirical formulas.

Fig. 11. Effect of lateral pressure on the longitudinal ultimate strength (a ¼ 3:0, b ¼ 2:5).
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5. Application of the present method in analysis and design

5.1. Derivation of the average stress–average strain curve

When applying Smith’s approach for calculation of the ultimate strength of ship
hulls [18,19], it is necessary to have average stress–average strain curves for plates
and beam-columns. Using the solutions provided in this paper, the average stress–
average strain curve for plates can be obtained.

From the elastic large deflection solution, we can obtain the following stress–strain
relation:

e ¼ �
fxð1 � nfy=xÞb

2

g2
�

p2

8a2g2
ðk2c2

kl � i2c2
ij0Þ: ð41Þ

From the rigid–plastic solution, we can obtain the following stress–strain relations:

e ¼ �
fxð1 � nfy=xÞb

2

g2
�

2klc2
kl

ag2
; a5k=l; ð42Þ

e ¼ �
fxð1 � nfy=xÞb

2

g2
�

2k2c2
kl

a2g2
; a5k=l: ð43Þ

Now if we define the average strain as

%ee ¼
e
e0
; e0 ¼ �

s0

E
ð44Þ

and plot the elastic large deflection solution together with the rigid–plastic solution
in the same figure, we can obtain the very familiar average stress–average strain
curves used in the literature. Fig. 12 gives an example of these results. In comparing
the present results with Fig. 6 of Ref. [20], the agreement is good except for the post-
buckling behavior. Using this approach to derive the average stress–average strain
relations, the effects of transverse stress and lateral pressure can also be taken into
account.

5.2. Empirical design equations

For the convenience of applying the present results in design, a large set of
parametric runs was carried out. Using curve fitting, the following empirical
formulas have been derived for quick calculation:

f ¼ fbdqdcdrda; ð45Þ

fb ¼
0:0614 þ

1:176

b
þ

1:16

b2
; b > 1:9;

1:0; b41:9;

8><
>: ð46Þ

dq ¼ 1 þ 0:034fv � 0:333f2
v ; ð47Þ
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dc ¼ 1 � 0:91xþ 0:8244x2 � 0:3077x3; ð48Þ

dr ¼ 1 � 0:8155fy=x þ 0:1345f2
y=x; ð49Þ

da ¼ 0:9789: ð50Þ

For uniaxial compression Fig. 13 shows a comparison between this formula
(Eq. (45)) and some other empirical expressions available in the literature (see Ref.
[11]).

Fig. 12. Average stress–average strain derived from the present method (a ¼ 3:0, fy=x ¼ 0:3, fv ¼ 0:2).

Fig. 13. A comparison of the present empirical formula with selected references.
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5.3. Interaction equation

Let us define

Rx ¼
fx

fxu

and Ry ¼
fy=xfx

fyu

; ð51Þ

where fxu is the longitudinal ultimate strength when the transverse stress is not
present. This value can be calculated by Eq. (45). The transverse compressive
strength when the longitudinal stress is not present is fyu. This value can be
approximated by the following formula [16]:

fyu ¼
fuF

a
þ 0:08 1 þ

1

b2

� �2

1 �
1

a

� �
; ð52Þ

where fuF is the ultimate strength formula given by Faulkner [21].
By curve-fitting the results calculated by the present procedure, the following

approximation is obtained:

R2
x þ 0:1135RxRy þ R2

y ¼ 1:0: ð53Þ

Fig. 14 shows the comparison of this equation with some other empirical formulas
[14,15,17,22] and they also agree very well.

5.4. Ultimate strength analysis of plates in FPSO longitudinal bulkheads

As mentioned in Section 1, plates in FPSO longitudinal bulkheads have been
found to be subjected to high level transverse stress together with lateral pressure.
The present simplified analytical method is used to analyze their ultimate strength.
The results are shown in Fig. 15. For this case, the effect of lateral pressure is quite
significant because of the large aspect ratio.

Fig. 14. A comparison of the predicted interaction equation with references.

W. Cui et al. / Marine Structures 15 (2002) 75–9794



6. Summary and conclusions

The strength of ship plates is very important from the design and safety viewpoint.
Although the problem has been addressed for long time, the solution to the problems
is still not very satisfactory. Many methods have been proposed including (1) finite
element method, (2) experiments, (3) empirical formulae which are based either on
numerical or experimental results and (4) analytical or semi-analytical approaches.
Among them the simplified analytical method proposed by Fujita et al. [8] has
received a lot of attention recently. The method combines the elastic large deflection
theory and the rigid–plastic analysis based on kinematically admissible collapse
mechanisms. The advantage of this approach over the finite element method is that it
is simple and efficient yet the results are reasonably accurate. The advantage over
empirical formulas is that it is based on a rational theory and thus can bring more
insight into understanding the nature of the structural behavior. Based on the
previous successes [9–11], this paper further extends the method to deal with the
situation where the plate is subjected to a combination of loads. Through this
investigation, the following conclusions can be drawn:

(1) The simplified analytical method is able to predict the ultimate strength of
unstiffened plates under combined loading.

(2) The effects of aspect ratio, slenderness and the residual stress distribution along
the width are the same as those concluded in Ref. [11]. This further confirms the
previous conclusion. However, the effect of the residual stress distribution along the
length is found to be negligible.

(3) The transverse compressive stress decreases the longitudinal ultimate strength
in a reasonably linear way.

Fig. 15. Effect of lateral pressure on the longitudinal ultimate strength of plates in FPSO longitudinal

bulkheads.
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(4) Moderate lateral pressure has very small effect on the longitudinal ultimate
strength. The prediction of this effect has also been compared with experimental
results and they agree reasonably well.

(5) Using the present method, it has also been demonstrated that the average
stress–average strain relation required in applying the Smith’s method to predict the
ultimate strength of ship hulls and the interaction relation between longitudinal
stress, transverse stress and lateral pressure can be obtained. Furthermore, for the
convenience of design application, an empirical formula is provided for quick
estimation of the ultimate strength of plates under combined loading.
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