科學研究:

研究方向:
主要為仿生輕質(zhì)結構及其仿生材料的應用基礎的研究。經(jīng)過長達20多年的研究積累,在甲蟲前翅三維結構(圖1A-C)及其輕質(zhì)仿生材料研究領域,形成了較為完善和系統(tǒng)的仿生體系,領跑于世界;早在20年前,就提出了甲蟲前翅的三維結構模型,又于近年探明了其芯層結構中小柱的共享機制、并首次提出了甲蟲板的概念(圖1D,E),為研發(fā)新一代夾層板奠定了堅實的基礎;預期產(chǎn)業(yè)化后將具有巨大應用前景和經(jīng)濟效益。
基礎研究:
不同結構類型(如格柵、曲面)甲蟲板的力學性能研究;
不同材料屬性甲蟲板的力學性能研究及其結構參數(shù)優(yōu)化。
應用研究:
土木建筑領域:多功能(保溫隔音抗震防火)輕質(zhì)秸稈墻體(承重/非承重墻體)、空心樓蓋的研發(fā);
航空航天領域:纖維增強樹脂基復合材料、金屬甲蟲板的研發(fā)(等效模型、振動性能等);
交通運輸領域:防撞吸能甲蟲板(設施/裝備)的研發(fā)
主持項目:
[16] 陳錦祥,李演生,郝寧,宋毅恒,杜生辰,充氣模盒技術研發(fā)的體系化服務,橫向課題,項目編號:H202220330,經(jīng)費:5萬元,研究期間:2022.06- 2023.12.
[15] 陳錦祥,趙才其,胥明,謝娟,郭振勝,衛(wèi)佩行,杜生辰,張曉明,潘隆成,余心笛,玄武巖纖維增強樹脂復合材料甲蟲板的等效模型及其振動機理研究,國家自然科學基金面上項目,項目編號:51875102,經(jīng)費:70.98萬元,研究期間:2019.1.1- 2022.12.31.
[14] 陳錦祥等,《工業(yè)化建筑部品與構配件制造關鍵技術研究與示范》中的子課題“基于仿生結構的復雜建筑部件的優(yōu)化設計及柔性制造技術研究”,135國家重點專項,項目編號:2017YFC0703700.,經(jīng)費:50萬元,研究期間:2017.9-2020.12.
[13] 陳錦祥,基于學科交叉的自主創(chuàng)新型人才培養(yǎng)的研究,校級創(chuàng)新創(chuàng)業(yè)類專項教改項目,項目編號:待定,經(jīng)費:0.8萬元,研究期間:2017.04-2018.12.
[12] 陳錦祥,謝娟,郭振勝,拓萬永,張曉明,徐夢燁,仿生一體化綠色輕質(zhì)秸稈墻體的應用基礎研究,華南理工大學亞熱帶建筑科學國家重點實驗室開放研究基金,項目編號: 2017ZA01,經(jīng)費:8.0萬元,研究期間:2017.1.1- 2018.12.31.
[11] 陳錦祥,謝娟,張曉明,衛(wèi)佩行,拓萬永,徐夢燁,“一帶一路”戰(zhàn)略中卓越人才的新型貫通式培養(yǎng)模式,2016年度東南大學土木工程優(yōu)勢學科二期教改項目,項目編號: CE04-2-6,經(jīng)費:5萬元,研究期間:2016.1-2018.6.
[11] 陳錦祥,謝娟,張曉明,衛(wèi)佩行,拓萬永,徐夢燁,“一帶一路”戰(zhàn)略中卓越人才的新型貫通式培養(yǎng)模式,2016年度東南大學土木工程優(yōu)勢學科二期教改項目,項目編號: CE04-2-6,經(jīng)費:5萬元,研究期間:2016.1-2018.6.
[10] 陳錦祥,沙弗(留學生),2015年度東南大學土木工程優(yōu)勢學科(二期)/品牌專業(yè)建設,國際合作與交流項目: 基于仿生學原理的新型秸稈建材開發(fā),項目編號: CE05-5-2,經(jīng)費:1.5萬元,研究期間:2015.1-2017.12.
[9] 陳錦祥,沙弗(留學生) ,謝娟,基于仿生學原理的新型秸稈建材開發(fā),2015年度東南大學土木工程優(yōu)勢學科(二期)/品牌專業(yè)建設,優(yōu)秀博士學位論文及創(chuàng)新人才培養(yǎng)基金項目,項目編號: CE02-2-25,經(jīng)費:12萬元,研究期間:2015.1-2017.12.
[8] 陳錦祥,拓萬永,謝娟,甲蟲前翅及仿生一體化蜂窩板的力學性能研究,2015年度東南大學土木工程優(yōu)勢學科(二期)/品牌專業(yè)建設,優(yōu)秀博士學位論文及創(chuàng)新人才培養(yǎng)基金項目,項目編號: CE02-2-7,經(jīng)費:12萬元,研究期間:2015.1-2016.12.
[7] 李峰,陳錦祥,周曉晶,謝娟,潘林,潘樂,陳勇,張家港市低碳生態(tài)生活科技社區(qū)建設,江蘇省科學技術廳科技支撐計劃-社會發(fā)展,項目編號: BE2013650,經(jīng)費:15萬元,研究期間:2013.6.1-2015.5.31.
[6] 陳錦祥,徐麗娜,謝娟,祖嶠,王勇,無墨生態(tài)打印技術及其應用研究,2012年度江蘇省“六大人才高峰”C類資助項目,項目編號:2012-JNHB-013,研究期間:2013.1-2015.12.(陳錦祥被列為“六大人才高峰”培養(yǎng)對象)
[5] 陳錦祥,王勇,劉建勛,謝娟,劉建斌,鄭晶晶,郭陽,陳興芬,一體化仿生蜂窩復合材料的力學特性研究,國家自然基金面上項目,項目編號:51173026,經(jīng)費:58萬元,研究期間:2012.1-2015.12.
[4] 胡顯奇,陳錦祥等,玄武巖纖維規(guī);a(chǎn)技術及工藝優(yōu)化關鍵技術研究與示范,國家科技支撐計劃課題,項目編號:2011BAB03B10,經(jīng)費:2550萬元,研究期間:2011-2013,已結題。
[3] 陳錦祥等,甲蟲前翅結構仿生復合材料的應用基礎研究,國家省自然科學基金,項目編號:50273034E0302,經(jīng)費:23.5萬元,研究期間:2003.1-2005.12,已結題。
[2] 陳錦祥等,仿生復合材料開發(fā)的應用基礎研究,浙江省自然科學基金,項目編號: 501017E0302,經(jīng)費:4.5萬元,研究期間:2002.1-2004.12,已結題。
[1] 陳錦祥,甲蟲前翅構造解析,京都工藝纖維大學,經(jīng)費:30萬日元,研究期間:1999年, 已結題。
參與的項目:
[12] 周滿等,大跨變截面PC波形鋼腹板組合箱梁受剪性能及屈曲破壞機理研究,江蘇高校優(yōu)勢學科建設工程,經(jīng)費:7萬元,研究期間:2015-2017,已結題。
[11] 吳智深等,重大工程耐久與健康創(chuàng)新引智基地,高等學校學科創(chuàng)新引智計劃(“111計劃”),研究期間:2012-2016,已結題。
[10] 吳智深等(本人參與,排名第5),高性能纖維復合索及其大跨預應力結構全壽命研究,江蘇省自然科學基金,項目編號:SBK201010166,經(jīng)費:100萬元,研究期間:2010-2013,已結題。
[9] 吳智深等(本人為核心成員),2012年江蘇省“雙創(chuàng)計劃”團隊,經(jīng)費:100萬元,研究期間:2012,已結題。
[8] 吳智深等(本人參與),高科技玄武巖纖維材料產(chǎn)業(yè)產(chǎn)學研聯(lián)合創(chuàng)新服務平臺啟動期建設,江蘇省科技計劃項目,項目編號:BY2011015,經(jīng)費:1200萬元,研究期間:2011.7-2012.12,已結題。
[7] 加藤千幸等(本人參與,為子課題:智能界面GUI開發(fā)等項目的主要負責人),創(chuàng)造性電子仿真軟件開發(fā),日本文部科學省2006-2008,經(jīng)費:26億日元,研究期間:2006-2008,已結題。
[6] 福山佳孝等(本人參與),綠色發(fā)動機技術(高效發(fā)動機-CO2低排放技術及高溫燃氣發(fā)動機葉片冷卻技術),日本文部科學省,經(jīng)費:5年約數(shù)十億日元,研究期間:2003-2006,已結題。
[5] 吉田豐明等(本人參與),新型耐熱材料實機應用研究,日本宇宙航空研究開發(fā)機構,經(jīng)費:每年約3千萬日元,研究期間:2002-2004,已結題。
[4] 小河昭紀等(本人參與),智能引擎葉片開發(fā)研究,日本宇宙航空研究開發(fā)機構,經(jīng)費:每年約3千萬日元,研究期間:2001-2004,已結題。
[3] 原田廣史等(本人參與,為子課題:結構強度評價項目的主要負責人),新世紀耐熱材料(系列課題),日本文部科學省,經(jīng)費:約20億日元,研究期間:2001-2006,已結題。
[2] 陳時若等(本人排名第二),蠶繭品質(zhì)與干燥工藝的關系研究,紡織部,經(jīng)費:3萬元,研究期間:1995年前后,已結題。
[1] 陳時若等(本人排名第三),蠶繭干燥機理研究,紡織部,經(jīng)費:3萬元,研究期間:1990年前后,已結題。
國際或國家發(fā)明專利:
[26] 宋毅恒,陳嘉順,陳錦祥, 一種點云處理三維重建方法(審查中)
申請?zhí)枺?01910839916.9
申請日期:2018/05/09
[25] 陳錦祥,郝寧,謝娟,陳宇來, 一種側拉式行李箱(審查中)
申請?zhí)枺?01810431572 .3
[24] 陳錦祥,陳宇來,謝娟,郝寧, 一種推拉式行李箱(審查中)
申請?zhí)枺?01810431190 .0
[23] 郭振勝,陳錦祥,宋毅恒,徐圓, 一種多層紙質(zhì)蜂窩夾芯板及其制備方法
專利號:ZL 201910738366.1
[22] 宋毅恒,郭振勝,陳錦祥,徐圓, 一種隔熱保溫蜂窩板及其制備方法
專利號:ZL 201910738358.7
[21] 陳錦祥,張志杰,宋毅恒,一種裝配式預制墻板、其制造方法及其模具
專利號:ZL 201910701329.3
[20] 陳錦祥,拓萬永,杜生辰, 一種針對夾層板芯層的剪切實驗裝置及其實驗方法
專利號:ZL 201810438935.6
[19] 陳錦祥,徐夢燁,余心笛,張曉明,一種多邊形柵格夾層板及其制作方法
專利號:ZL 2018 1 0443738.3 2018.05.10
[18] 任逸哲,陳錦祥等,仿生雙螺旋排布增強秸稈板材及其制備方法, ZL 201610488902.3
[17] 張曉明,陳錦祥,潘隆成, 一種適用于裝配式結構的節(jié)點連接裝置
申請?zhí)枺?01610903058.6 2016/10/17
[16] 陳錦祥,張曉明,徐夢燁,拓萬永,一種汽車保險杠緩沖結構
申請?zhí)枺?01610903059 2016/10/17
[15] 張曉明,謝娟,陳錦祥,郭振勝,一種多邊形格構式格柵-柱結構夾層板
申請?zhí)枺?01610903458.7 2016/10/17
[14] 郭振勝,俞濤,陳錦祥,拓萬永, 一體化秸稈夾心填充墻體制備方法及一體化秸稈夾心填充墻體
已經(jīng)授權:201710016592.X 授權公告日:2019.11.05
[13] 張曉明,陳錦祥,郭振勝,一種連接裝置
申請?zhí)枺?01610395855.8 2016/6/6
[12] 張曉明,陳錦祥,謝娟,李敏,一種蜂窩夾層板
已經(jīng)授權:201510976402.X 2015-12-23
[11] 周曉晶,陳錦祥,周滿,尹磊,謝娟,垃圾投放箱及垃圾分類投放方法
申請?zhí)枺?01410855266.4 2014-12-31
[10] 陳錦祥,何成林,顧承龍,劉建勛,帶封邊一體化蜂窩板的成型工藝,ZL201310302313.8 2013-7-18 授權公告號:CN103341988B 授權公告日:2015.09.16
[7] 陳錦祥,謝娟,何成林,顧承龍,一體化的耐久型柱芯封邊夾層板,ZL201210229905.7 2012-7-2 授權公告號:CN102950825B 授權公告日:2015.06.17
[6] Jinxiang Chen,Zhishen WU,Gang Wu,Juan Xie,Hong Zhu Mold and Method for Integrally Manufacturing Functional Cored Slab and Solid Slab with Polygonal Grid Honeycomb Structure Patent No. US 8889051(Authorization:2014.11.18)
[5] 陳錦祥,關蘇軍,謝娟,陳圣威,玄武巖纖維增強的木塑復合材料及其制備方法 ZL201010253516.9. 2012-08-13
[4] 陳錦祥,謝娟,關蘇軍,朱虹,一體化制備多邊形柵格蜂窩結構實芯功能板的模具與方法 ZL201010228680.4 2010-07-15 公告日2012-04-25 公告號CN101885217B
[3] 陳錦祥,謝娟,陳放,一種生態(tài)打印方法及打印頭裝置 ZL201010218623.8 [P](2010-06-30 )
[2] 陳錦祥,關蘇軍,一體化制備多邊形格柵空芯板的模具裝置和方法 ZL201010110069.1. 2010-02-11 公告日:2012-0-05 公告號CN101797783B
[1] 陳錦祥,倪慶清,巖本正治,一種中間為多邊形柵格的夾層強化板 ZL03116503.6(2006.10.11)
實用新型:
[27] 陳錦祥,張曉明,拓萬永,一種仿生組合梁/板結構及施工方法
申請?zhí)枺?01610424915.4 2016/6/15
[26] 陳錦祥,張曉明,謝娟,徐夢燁,一種具有薄壁多邊形柵格-柱結構的緩沖夾層板
申請?zhí)枺?01610424319.6 2016/6/15
[25] 陳錦祥,張曉明,拓萬永,杜生辰,一種幕墻裝飾結構
申請?zhí)枺?01610903060.3 2016/10/17
[24] 張曉明,謝娟,陳錦祥,一種加強型多邊形格柵結構
申請?zhí)枺?01610903361.6 2016/10/17
[23] 陳錦祥,張曉明,謝娟,拓萬永,一種仿生吸能盒
申請?zhí)枺?01610903362 2016/10/17
[22] 陳錦祥,陳宇來,謝娟,郝寧,一種推拉式行李箱
申請?zhí)枺?018-05-08
[21] 陳錦祥,郝寧,謝娟,一種側拉式行李箱
申請?zhí)枺?018-05-08
[20] 陳錦祥,張曉明,謝娟,拓萬永,一種仿生吸能盒
申請?zhí)枺?016-10-17
[19] 陳錦祥,張曉明,徐夢燁,拓萬永,一種汽車保險杠緩沖結構
申請?zhí)枺?016-10-17
[18] 張曉明,謝娟,陳錦祥,一種加強型多邊形格柵結構
申請?zhí)枺?016-10-17
[17] 張曉明,陳錦祥,潘隆成,一種適用于裝配式結構的節(jié)點連接裝置
申請?zhí)枺?016-10-17
[16] 陳錦祥,張曉明,謝娟,徐夢燁,一種緩沖夾層板
申請?zhí)枺?016-06-15
[15] 陳錦祥,張曉明,拓萬永,一種仿生組合梁/板結構及施工方法
申請?zhí)枺?016-06-15
[14] 張曉明,陳錦祥,郭振勝,一種仿生新型鋼板剪力墻
申請?zhí)枺?016-06-15
[13] 張曉明,陳錦祥,謝娟,李敏,一種蜂窩夾層板
申請?zhí)枺?0152089186.9 2015-12-23
[12] 周曉晶,陳錦祥,周滿,尹磊,謝娟,垃圾投放箱
申請?zhí)枺?01420867342.9 2012-12-31
[11] 陳錦祥,謝娟,何成林,顧承龍,一體化的耐久型柱芯封邊夾層板
申請?zhí)枺?01220319451.8 2012-07-02
[10] 王勇,陳錦祥,孟闖,謝娟,一種無墨生態(tài)打印裝置 ZL 201120556549.0 2011-12-28 證書號:2393614
[9] 謝娟,陳錦祥,祖嶠,萬春風,一種紙平展式無墨生態(tài)激光打印裝置 ZL 201120553486.3 2011-12-27 授權公告號CN202378430 U
[8] 陳錦祥,汪昕,謝娟,顧承龍,何成林,一體化蜂窩板的封邊模具 ZL 2011 2 0297569.0(2011-08-16) 公告日:2012-05-09
[7] 王勇,周駿,陳錦祥,一種適用于萬能制樣機的靠模裝卸裝置 ZL201120063847.6(2011-3-11)
[6] 陳錦祥,謝娟,關蘇軍,朱虹,一體化制備多邊形柵格蜂窩結構實芯功能板的模具 ZL 2010 2 02261000.4 (2010-07-15)
[5] 陳錦祥,謝娟,陳放,一種生態(tài)打印頭裝置 ZL 2010 2 0248698.6 (2010-06-30)
[4] 陳錦祥,關蘇軍, 一體化制備多邊形格柵空芯板的模具裝置 ZL 2010 2 0113926.9 (2010-02-11)
[3] 王勇,周駿,陳錦祥,可直插麥克風的液晶顯示器及其和麥克風的組合構件 申請?zhí)枺?00920295387.2(2009-2-29)
[2] 倪,岡崎,陳,高層間強度サンドイッチ構造およびその製造方法(日本) 発明等整理番號:0197
[1] 陳錦祥,倪慶清,一種中間為多邊形柵格的夾層板 ZL03 2 30500.1(2004-08-18)
論文專著:

已發(fā)表論文120余篇,著書4本。 (近10年的主要業(yè)績)
出版專著:
[5] Chen J.,Ni Q.,Xie J., Light Weight Composites Structure of Beetle Forewing and Its Mechanical Properties (Chapter 16),Composites and Their Properties,ISBN 978-953-51-0711-8,edited by Ning Hu,In Tech,2012. pp. 359-390(吳寧主編,合著)
[4] 倪慶清,陳錦祥,カブトムシから學ぶ構造材料,次世代バイオミメティクス研究の最前線―生物多様性に學ぶ:(3-18),シーエムシー出版,2011,pp.1-350(下村政嗣主編,合著)
[3] 袁觀洛主編,紡織商品學(教材),中國紡織大學出版社,1998.8(合著)
[2] 陳錦祥,"繭絲干燥學(第3版), 浙江絲綢工學院教材, 1992.2(獨著,現(xiàn)陳列于校史館)
[1] 陳錦祥,制絲文獻選編, 浙江絲綢工學院教材, 1990.3(獨編,現(xiàn)陳列于校史館)
發(fā)表論文:
2007后SCI論文 (約100篇,其中一作或通訊者80多篇)
其中,仿生類70篇:非仿生類11篇
-仿生領域:2017不俗論文率50%(13/23);-2019:56%(19/34); 2020: 57% (24/42)
總引用次數(shù):2015.10-100次,2017.2-300次,2018.5-500,2021.8-1100次。2023.1-1455
H影響因子,2018.5:14-10;2020.5:19-13;2021.8:19-14;2023.1:23;
仿生類70
[70] Chen J , Yu X , Song Y, et al.T Compressive properties of aluminum middle-trabecular beetle elytron plates with a large height-to-thickness ratio core. Materials Today Communications. Q2, IF=3.8
[69] Li, Y., Zhu, N. & Chen, J. Straw characteristics and mechanical straw building materials: a review. J Mater Sci 58, 2361–2380 (2023). Q2, IF=4.5
https://doi.org/10.1007/s10853-023-08153-8
[68] Li Y, Yang J, Chen J, Yin J. Study of the Heat Transfer Performance of Laminated Paper Honeycomb Panels. Biomimetics. 2023; 8(1):46. Q2, IF=4.5.
https://doi.org/10.3390/biomimetics8010046.
[67] Chaochao He, Yalan Liu, Jinxiang Chen, Ning Hao, Zhensheng Guo, The compressive mechanical properties of honeycomb plates and beetle elytron plates with different foam densities and height-to-thickness ratios, Journal of Sandwich Structure and Materials, Accept. Q1, IF=3.9
[66] Ning Hao, Yiheng Song, Jinxiang Chen*, Chaochao He, Yinsheng Li. Compressive performance of a foam-filled fiber-reinforced grid beetle elytron plate. Science China Technological Sciences (Sci China Technol Sci). Accept. Q2, IF=4.6
[65] Shengchen Du,Ning Hao,Jinxiang Chen*,Yinsheng Li. Calculation of the equivalent shear moduli of the grid beetle elytron plate core layer, Archive of Applied Mechanics. 2022. https://doi.org/10.1007/s00419-022-02311-1. Q3, IF=2.8 WOS:000878453600003
從40到此,學校系統(tǒng)中已經(jīng)認證
[64] Song Y, Lin Q, Chen J. Clamping method and mechanical properties of aluminum honeycomb cylindrical curved plates under radial compression. Journal of Sandwich Structures & Materials. 2022;24(8):2142-2152. doi:10.1177/10996362221122010. Q2, IF=3.9
[63] Jinxiang Chen, Ning Hao*, Yiheng Song, Jing Yang, Chaochao He. Shear properties of 3D-printed grid beetle elytron plates. Journal of Materials Science (J. Mater. Sci.). 2022, 57: 16974-16987. https://doi.org/10.1007/s10853-022-07659-x. Q2, IF=4.5
[62] Jinxiang Chen , Shengcheng Du, Chaochao He*, Nanxing Zhu. Vibrational characteristics of a foam-filled short basalt fiber reinforced epoxy resin composite beetle elytron plate, Materials. 2022; 15(21), 7748. https://doi.org/10.3390/ma15217748. Q1, IF=3.4
[61] YH Song, ZY Wang, J Chen, JX Chen*. Research Progress on Curved Plates in China: Applications in Architecture, Applied Sciences, 2022 https://doi.org/10.3390/app12020550. (SCI). Q1, IF=2.7
[60] Song, Yiheng & Lin, Qinyu & Chen, Jinxiang. (2022). Research progress on curved plates in China: Mechanical analysis methods and load-bearing behaviours. Structures. 39. 793-807. 10.1016/j.istruc.2022.03.073.Q2, IF=4.01
[59] Zhao T, Yang J, Chen J, Guan S. Review of carbon fiber-reinforced sandwich structures. Polymers and Polymer Composites. 2022;30. Q3, IF=2.1
[58] Hu, Liping & Zhang, Zhijie & Chen, Jinxiang & Ren, Hao. (2021). Structural and Thermal Performance of a Novel Form of Cladding Panel: the I-beam Beetle Elytron Plate. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 1-33. 10.1680/jstbu.21.00043. Q4, IF=1.56
[57] XM Zhang, XD Yu, SC Du, JX Chen*, YQ Fu, A Box-Girder Bridge Inspired by Beetle Elytra and the Buckling and Shear Properties of a Trabecular-Honeycomb Steel Web, Journal of bridge engineering, 2022;27 (SCI, 10.1061/(ASCE)BE.1943-5592.0001855. Q2, IF=3.6
[56] N Hao, JX Chen*, YH Song, XM Zhang, TD Zhao, YQ Fu, A new type of bionic grid plate—the compressive deformation and mechanical properties of the grid beetle elytron plate. J. Sandw. Struct. Mater. 2022, 24 321–336(SCI,Q1, IF=3.9)
[55] YH Song, JS Chen, JX Chen*, WH Qin, DY Liu, J Chen. Extraction and reconstruction of a beetle forewing cross-section point set and its curvature characteristics. Pattern Analysis and Applications (SCI, Q1, IF=3.9) Doi: 10.1007/s10044-021-01037-0
[54] SC Du, YS Li, JX Chen*. The calculation of in-plane equivalent elastic parameters of a grid beetle elytra plate core. Mechanics of Materials. (SCI, Q2, IF=3.9) Doi: 10.1016/j.mechmat.2021.103999
[53] JX Chen, XD Yu, XM Zhang*, Y Xu, YQ Fu, The effect of trabecular chamfers on the compressive ductility of beetle elytron plates, Mechanics of Materials (SCI, Q2, IF=3.9). Doi:10.1016/j.mechmat.2021.104093
[52] JX Chen, N Hao*, TD Zhao, YH Song, YQ Fu. Flexural properties and failure mechanism of 3D-printed grid beetle elytron plates. International Journal of Mechanical Sciences. 2021, 210,106737(SCI, Q1, IF=7.3)
[51] JX Chen, JY Huang, LC Pan, TD Zhao, XM Zhang, HW Lin, The 3D lightweight structural characteristics of the beetle forewing Verification,Structures,2021, 33, 2943-2949 (SCI, Q2, IF=4.01)
[50] J Yang, ZS Guo, JX Chen*, CC He. Analysis of the convective heat transfer and equivalent thermal conductivity of functional paper honeycomb wall panels. Experimental Heat Transfer (SCI, Q2, IF=3.5) Doi:10.1080/08916152.2021.1919246
[49] ZS Guo, Y Xu, JX Chen*, PX Wei, YH Song, YQ Fu. Heat transfer characteristics of straw-core paper honeycomb plates II: Heat transfer mechanism with hot-above and cold-below conditions . Applied Thermal Engineering.2021,117165 (SCI, Q1, IF=6.4)
[48] ZS Guo, YH Song, JX Chen*, Y Xu, CQ Zhao, YQ Fu. Relation between the geometric parameters and the composite heat transfer of paper honeycomb plates under cold-above/hot-below conditions and the corresponding influence mechanism. Journal of Building Engineering. 43 (2021) 102582 (SCI, Q2, IF=4.0)
[47] JX Chen, ZS Guo*, SC Du, YH Song, H Ren, YQ Fu. Heat transfer characteristics of straw-core paper honeycomb plates (beetle elytron plates) I: Experimental study on horizontal placement with hot-above and cold-below conditions. Applied Thermal Engineering, 194 (2021) 117095 (SCI, Q1, IF=6.4)
[46] XM Zhang, XD Yu, JX Chen*, CQ Zhao, SJ Guan, YQ Fu, Influence of the trabecular and chamfer radii on the three-point bending properties of trabecular beetle elytron plates and the corresponding strengthening mechanism, JBE 2021,18, 1–10. (Q2, IF=4.0)
[45] ZJ Zhang, EMA Elsafi, JX Chen*, PX Wei, YQ Fu, Optimization of the Structural Parameters of the Vertical Trabeculae Beetle Elytron Plate Based on Mechanical and Thermal Insulation Properties, KSCE Journal of Civil Engineering,2020, 24. (Q3, IF=2.2)
[44] N Hao, MY Xu, JX Chen*, YH Song, ZJ Zhang, Y Xu, YQ Fu. Influence of the chamfer on the bending properties of beetle elytron plates, Journal of Bionic Engineering,2021, 18,138–149. (Q2, IF=4.0)
[43] JX Chen, SC Du, LC Pan*, N Hao, XM Zhang, YQ Fu, The compressive property of a fiber-reinforced resin beetle elytron plate and its influence mechanism. J Appl Polym Sci. 2021;138:e50692. (SCI, Q2, IF=3.0)
不俗論文率57%(24/42,從2012年起)
[42] Wanyong Tuo, Li Yan, Jinxiang Chen*, Xiaoling Chang, Yibin Gao, Yan Wang. Effect of the length of basalt fibers on the shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates. J. Sandw. Struct. Mater. 2020, 23 (5) , pp.1527-1540 ( SCI,Q1, IF=3.9).
[41] Chen, Jinxiang & Song, Yiheng & Chen, Jiashun & Du, Shengchen. (2020). Research progress of curved plates in China (I): Classification and forming methods. Proceedings of the Institution of Civil Engineers - Structures and Buildings. 175. 1-46. 10.1680/jstbu.18.00214. (SCI,Q4, IF=1.56, https://www.icevirtuallibrary.com/doi/10.1680/jstbu.18.00214)
[40] JX Chen, N Hao, LC Pan, LP Hu, SC Du, YQ Fu, Characteristics of compressive mechanical properties and strengthening mechanism of grid beetle elytron plates. Journal of Materials Science, 2020, 55(20): 8541-8552. (SCI, Q2, IF=4.5) DOI 10.1007/s10853-020-04630-6. WOS:000526241800002 (不俗論文)
[39] XM Zhang, XD Yu, JX Chen*, LC Pan, Vibration properties and transverse shear characteristics of multibody molded beetle elytron plates, SCIENCE CHINA-TECHNOLOGICAL SCIENCES(Q2, IF=4.6).
DOI: 10.1007/s11431-019-1570-6. WOS:000538356600001
[38]WY Tuo, JX Chen* ,MY Xu, ZJ Zhang,ZS Guo,Shear mechanical properties of the core structure of biomimetic fully integrated honeycomb plates. Journal of Sandwich Structures & Materials 2020, Vol. 22(4) 1184–1198.(SCI, Q1, IF=3.9)(不俗論文)
[37] XD Yu, XM Zhang, JX Chen*, CQ Zhao, TD Zhao, YQ Fu, The flexural property and its synergistic mechanism of multibody molded beetle elytron plates, Science China-Technological Sciences, 2020, 63(5), 768-776, (Q2, IF=4.6) (不俗論文)
[36] JX Chen,XD Yu,MY Xu,Y Okabe,XM Zhang,WY Tuo. The compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate. J. Sandw. Struct. Mater., 2020, 22(4):948-961. (SCI,Q1, IF=3.9) (不俗論文)
[35] XM Zhang, JX Chen*, Y Okabe, PW Zhang, XB Xiong, XD Yu. Influence of honeycomb dimensions and forming methods on the compressive properties of beetle elytron plates. J. Sandw. Struct. Mater, 2020;22(1):28-39. (Q1, IF=3.9) DOI: 10.1177/1099636217731993.(不俗論文)
不俗論文率56%(19/34,從2012年起)
[34] ZJ Zhang, JX Chen*, EMA Elbashiry, ZS Guo and XD Yu, Effects of changes in the structural parameters of bionic straw sandwich concrete beetle elytron plates on their mechanical and thermal insulation properties, Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 217-225.(SCI, Q1, IF=3.9) DOI: 10.1016/j.jmbbm.2018.10.003. WOS: 000457510500025(不俗論文)
[33] XD Yu, LC Pan, JX Chen*, XM Zhang, PX Wei. Experimental and numerical study on the energy absorption abilities of trabecular-honeycomb biomimetic structures inspired by beetle elytra. Journal of Materials Science, 2019, 54, 2193-2204.(SCI, Q2, IF=4.5)DOI: 10.1007/s10853-018-2958-0. WOS: 000450016100022. (不俗論文)
[32] JX Chen*, XM Zhang, Y Okabe, J Xie and MY Xu. Beetle elytron plate and the synergistic mechanism of a trabecular honeycomb core structure. Science China-Technological Sciences, 2019, 62, 87-93.(SCI, Q2, IF=4.6)
DOI: 10.1007/s11431-018-9290-1. WOS: 000459311600009(不俗論文)
[31] MY Xu, LC Pan, JX Chen*, XM Zhang and XD Yu. The flexural properties of end-trabecular beetle elytron plates and their flexural failure mechanism. Journal of Materials Science, 2019, 54, 8414-8425.(SCI, Q2, IF=4.5)
DOI: 10.1007/s10853-019-03488-7. WOS: 000461787500026(不俗論文)
[30] JX Chen, WY Tuo, PX Wei, Y Okabe, M Xu and MY Xu. Characteristics of the shear mechanical properties and the influence mechanism of short basalt fiber reinforced polymer composite materials. J. Sandw. Struct. Mater, 2019, 21, 1520-1534. (SCI,Q1, IF=3.9)DOI: 10.1177/1099636217716466. WOS: 000468812800012. (不俗論文)
[29] CQ Zhao, SC Du, JX Chen*, WY Tuo, MY Xu. Mechanical relationships between the fiber-lamination methods and the structural functions of Oryctes Rhinoceros horns. MATERIALI IN TEHNOLOGIJE, 2019, 53, 17-23.(SCI, Q4, IF=0.5) DOI: 10.17222/mit.2018.119. WOS: 000458523900003.
[28] XM Zhang, JX Chen*, Y Okabe, J Xie, ZJ Zhang. Compression properties of metal beetle elytron plates and the elementary unit of the trabecular-honeycomb core structure. J. Sandw. Struct. Mater, 2019, 21, 2031–2041. (SCI, Q1, IF=3.9) DOI: 10.1177/1099636217722823. WOS: 000481475800012(不俗論文)
[27] WY Tuo, PX Wei, JX Chen*, Y Okabe, XM Zhang, MY Xu. Experimental study of the edgewise compressive mechanical properties of biomimetic fully integrated honeycomb plates. J. Sandw. Struct. Mater, 2019, 21, 2735-2750. (SCI, Q1, IF=3.9) DOI: 10.1177/1099636217722334. WOS: 000486040900006(不俗論文)
[26] XD Yu, XM Zhang, JX Chen*, LC Pan, Y Xu and YQ Fu. Experimental verification and optimization research on the energy absorption abilities of beetle elytron plate crash boxes. Materials Research Express, 2019, 6, 1165e2.(SCI, Q4, IF=2.3) DOI: 10.1088/2053-1591/ab4f2c.
[25] JX Chen, WY Tuo, CF Wan, XM Zhang. Shear test method for and mechanical characteristics of short basalt fiber reinforced polymer composite materials. Journal of Applied Polymer Science, 2018, 135, 1-8. (SCI, Q2, IF=3.0)
DOI: 10.1002/app.46078. WOS: 000425826800004.
[24] T Yu, YZ Ren, ZS Guo, X Chen, JX Chen*, Elsafi Mohamed Adam Elbashiry. Progress of research into cotton straw and corn straw cement-based building materials in China. Advances in Cement Research, 2018, 30, 93–102. (SCI, Q3, IF=2.0) DOI: 10.1680/jadcr.17.00040. WOS: 000426014600001.
[23] JX Chen*, EMA Elbashiry, T Yu, YZ Ren, ZS Guo, SY Liu. Research progress of wheat straw and rice straw cement-based building materials in China. Magazine of Concrete Research, 2018, 70, 84-95. (SCI, Q3, IF=2.5)
DOI: 10.1680/jmacr.17.00064. WOS: 000418426700003.(不俗論文)
[22] JX Chen, MY Xu, Y Okabe, ZS Guo, XD Yu. Structural characteristics of the core layer and biomimetic model of the ladybug forewing. Micron, 2017, 101, 156-161. (SCI, Q4, IF=2.3)DOI: 10.1016/j.micron.2017.07.005. WOS: 000413283300021.(不俗論文)
[21] JX Chen*, XM Zhang, Y Okabe, K Saito, ZS Guo, LC Pan. The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Mater. Des, 2017, 131, 481-486. (SCI, Q1, IF=8.4).
DOI: 10.1016/j.matdes.2017.06.014 . WOS: 406738400049. (不俗論文)
[20] XM Zhang, JX Chen*, J Xie, Y Okabe, LC Pan, MY Xu. The beetle elytron plate:a lightweight, high-strength and buffering functional-structural bionic material. Scientific Reports, 2017, 7. (SCI, Q2, IF=4.6)
DOI: 10.1038/s41598-017-03767-w. WOS: 404451300046. (不俗論文)
[19] JX Chen*, WY Tuo, ZS Guo, LL Yan. The 3D lightweight structural characteristics of the beetle forewing. Mater. Sci. Eng. C, 2017, 71, 1347-1351. (SCI, IF=7.3).
DOI: 10.1016/j.msec.2016.10.060. WOS: 390967200149.
[18] WY Tuo, J Xie, JX Chen*, XJ Guo. Non-hollow-core trabeculae of Cybister and compressive properties of biomimetic models of beetles’ forewings. Mater. Sci. Eng. C, 2016, 69, 933-940. (SCI, Q1, IF=7.3).
DOI: 10.1016/j.msec.2016.07.062. WOS: 383930900107. (不俗論文)
[17] XM Zhang, C Liu, JX Chen*, T Yu, YY Gu. The influence mechanism of processing holes on the flexural properties of biomimetic integrated honeycomb plates. Mater. Sci. Eng. C, 2016, 69, 798-803. (SCI, Q1, IF=7.3).
DOI: 10.1016/j.msec.2016.07.048. WOS: 383930900093.
[16] JX Chen*, WY Tuo, XM Zhang, CL He, J Xie, C Liu. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates. Mater. Sci. Eng. C, 2016, 69, 255-261. (SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2016.06.087. WOS: 383930900030.
[15] WY Tuo, JX Chen*, ZS Wu, J Xie, Y Wang. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles. Mater. Sci. Eng. C, 2016, 65, 51-58. (SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2016.04.025. WOS: 000376833200007.
[14] M Zhou, J Xie, JX Chen*, WY Tuo*. The influence of processing holes on the flexural properties of biomimetic integrated honeycomb plates. Mater. Des, 2015, 86, 404-410. (SCI, Q1, IF=8.4)
DOI: 10.1016/j.matdes.2015.07.060. WOS: 000362862700052. 本文榮獲 2015年“中國化纖協(xié)會、恒逸基金”優(yōu)秀論文獎
[13] JX Chen*, Q Zu, G Wu, J Xie, WY Tuo. Review of beetle forewing structures and their biomimetic applications in China:(II) On the three-dimensional structure, modeling and imitation. Mater. Sci. Eng. C, 2015, 55, 620-633. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2015.04.045. WOS: 000358809500064.(不俗論文)
[12] JX Chen*, J Xie, ZS Wu, EMA Elbashiry, Y Lu. Review of beetle forewing structures and their biomimetic applications in China:(I) On the structural colors and the vertical and horizontal cross-sectional structures. Mater. Sci. Eng. C, 2015, 55, 605-619. ( SCI, IF=7.3)
DOI: 10.1016/j.msec.2015.05.064. WOS: 000358809500063.(不俗論文)
[11] CL He, JX Chen*, ZS Wu, J Xie, Q Zu, Y Lu. Simulated effect on the compressive and shear mechanical properties of biomimetic integrated honeycomb plates. Mater. Sci. Eng. C, 2015, 50, 286-293. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2015.02.011. WOS: 000351804100035.
[10] CL He, Q Zu, JX Chen*, MN Noori. A review of the mechanical properties of beetle elytra and development of the biomimetic honeycomb plates. J. Sandw. Struct. Mater, 2015, 17, 399-416. ( SCI, Q1, IF=3.9)
DOI: 10.1177/1099636215576881. WOS:000355329600004.
[9] JX Chen*, CL He, CL Gu, JX Liu, CW Mi, SJ Guo. Compressive and flexural properties biomimetic integrated honeycomb plates. Mater. Des, 2014, 64, 214-220. (SCI , Q1, IF=8.4)
DOI: 10.1016/j.matdes.2014.07.021. WOS: 000342681600027.(不俗論文)
[8] CL Gu, JX Liu, JX Chen*, CL He, Y Lu, Y Zhao. Technological Parameters and Design of Bionic Integrated Honeycomb Plates. Journal of Bionic Engineering, 2014, 11,134-143. (SCI, Q2, IF=4.0)
DOI: 10.1016/S1672-6529(14)60028-7. WOS: 000330081600014.(不俗論文)
[7] JX Chen*, Y Wang, C Gu, JX Liu, YF Liu, Min Li, Yun Lu. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition,Materials, 2013, 6, 2483-2496. (SCI, Q1, IF=3.4)
DOI: 10.3390/ma6062483. WOS: 000320772300022.. (不俗論文)本文榮獲 2014年“中國化纖協(xié)會、恒逸基金”論文評選三等獎(本文標題的中譯為《MAPE增容BF- WPC復合材料的力學性能及其影響機理》)
[6] JX Chen*, G Wu, Beetle Forewings:Epitome of the optimal design for lightweight composite materials. Carbohydrate Polymers, 2013, 91, 659-665. (SCI, Q1, IF=11.2)
DOI: 10.1016/j.carbpol.2012.08.061. WOS: 000312359900027.(不俗論文)
[5] JX Chen*, J Xie, H Zhu, S Guan, G Wu, MN Noori, S Guo. Integrated Honeycomb Structure of a Beetle Forewing and its Imitation. Mater. Sci. Eng. C, 2012, 32, 613-618. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2011.12.020. WOS: 000301275700031.(不俗論文)
[4] JX Chen*, C Gu, S Guo, C Wan, X Wang, J Xie, X Hu. Integrated Honeycomb Technology Motivated by the Structure of Beetle Forewings. Mater. Sci. Eng. C, 2012, 32, 1813-1817. ( SCI, Q1, IF=7.3)
DOI: 10.1016/j.msec.2012.04.067. WOS: 000306937700011.(不俗論文)
[3] JX Chen*, G Dai, Y Xu , M Iwamoto. Basic study of biomimetic composite materials in the forewings of beetles. Materials Science and Engineering A, 2008, 483-484, 625-628 (SI). (SCI , Q1, IF=6.4)
DOI: 10.1016/j.msea.2006.09.180. WOS: 000256071100157.
[2] JX Chen*, G Dai, Y Xu, M Iwamoto. Optimal Composite Structures in the Forewings of Beetles. Composite Structures, 2007, 81, 432-437. (SCI, Q1, IF=6.3)
DOI: 10.1016/j.compstruct.2006.09.006. WOS: 000249193800013.
[1] JX Chen*, QQ Ni, Y Xu, M Iwamoto. Lightweight composite structures in the forewings of beetles. Composite Structures, 2007, 79, 331-337. (SCI, Q1, IF=6.3)
DOI: 10.1016/j.compstruct.2006.01.010. WOS: 000246334400002.
非仿生類11篇
[11] XC Zheng, QN Li, JX Chen*, SS Luo, XL Chang. In-Plane Stiffness of Precast Monolithic Floor Composite Structures. Proceedings of the Institution of Civil Engineers - Structures and Buildings. (SCI, Q4, IF=1.56,
https://www.icevirtuallibrary.com/doi/10.1680/jstbu.19.00075)
[10] ZS Guo, N Hao, LM Wang, JX Chen*. Review of Basalt-Fiber-Reinforced Cement-based Composites in China: Their Dynamic Mechanical Properties and Durability. Mechanics of Composite Materials, 2019, 55, 107-120.(SCI, Q4, IF=1.7)DOI:10.1007/s11029-019-09796-y. WOS:000464738000010.
[9] PX Wei, WY Tuo, JX Chen*, XH Chen, JY Xie. Review of the Characteristic Curves of Silkworm Cocoon Hot air Drying and its Technological Configuration. Fibres & Textiles in Eastern Europe, 2018, 26, 20-28. (SCI,Q3, IF=1.1)
DOI: 10.5604/01.3001.0012.1308. WOS: 000441166000003.
[8] JX Chen*, C Meng, J Xie, L Pan, D Zhou, JN Chen. Laser eco-printing technology for silk fabric patterns. Indian Journal of Fibre & Textile Research, 2016, 41, 78-83. (SCI , IF=0.825) WOS: 000374201300012.
[7] PX Wei, M Zhou, L Pan, J Xie, JX Chen*, Y Wang. Suitability of Printing Materials for Heat-induced Inkless Eco-printing. Journal of Wood Chemistry and Technology, 2016, 36, 129-139. (SCI, IF=2.6) DOI: 10.1080/02773813.2015.1083582. WOS: 000364850300005.
[6] JX Chen*, LN Xu, J Xie, Y Wang, L Pan, Q Zu. The effect of laser inkless eco-printing on the carbonized microstructure of paper. Cell Chem. Technol, 2016, 50, 101-108. (SCI, Q3, IF=1.3) WOS: 000376831900013.
[5] L Pan, JX Chen*, CF Wan, H Ren, HM Zhai, Y Wang. Investigating the environmental impact of pyrolysis volatiles of printing paper under a nitrogen atmosphere. Cell Chem. Technol, 2015, 49, 863-871. (SCI, Q3, IF=1.3)
WOS: 000368648800017.
[4] JX Chen*, L Pan, J Xie, G Wu, H Ren, Y Wang. Pyrolysis volatiles and environmental impacts of printing paper in air. Cellulose, 2014, 21, 2871-2878. ( SCI, Q1, IF=5.7) DOI: 10.1007/s10570-014-0268-5. WOS: 000341490200016.(不俗論文)
[3] JX Chen*, J Xie, L Pan, X Wang, LN Xu, Y Lu. The Microstructure of Paper after Heat-induced Inkless Eco-printing and its Features. Journal of Wood Chemistry and Technology, 2014, 34, 202-210.( SCI , IF=2.6).
DOI: 10.1080/02773813.2013.853085. WOS: 000331691500005.(不俗論文)
[2] J Xie, JX Chen*, Y Wang, YF Liu, MN Noori, L Pan. Weight Loss Phenomenon of Paper and the Mechanism for Negligible Damage of Heat-induced Inkless Eco-printing. Cell Chem. Technol, 2014, 48, 577-584. (SCI , Q3, IF=1.3)
WOS: 000343076300019.
[1] JX Chen*, Y Wang, J Xie, C Meng, G Wu, Q Zu. Concept of a Heat-induced Inkless Eco-printing. Carbohydrate Polymers,, 2012, 89, 849-853. ( SCI, Q1, IF=11.2) DOI: 10.1016/j.carbpol.2012.04.020. WOS: 000305369200017.
EI期刊論文(不包括會議后的EI)
[20] 陳錦祥. 甲蟲前翅仿生應用基礎研究二十年:內(nèi)部結構、模型及其一體化蜂窩板[J]. 中國科學•技術科學, 2018, 48(07):701-718.
[19] 陳錦祥. 低碳生活內(nèi)涵及其對策[J]. 中國人口•資源與環(huán)境, 2014, 24(S2), 84-87.
[18] 關蘇軍, 劉恒山, 汪麗娜, 徐英蓮, 陳錦祥. 玄武巖纖維增強木塑復合材料的拉伸和熔融性能[J].功能材料, 2011, 42(S2) :245-247.
[17] 關蘇軍, 萬春風, 汪麗娜, 徐英蓮, 陳錦祥*. 玄武巖纖維增強木塑復合材料的力學性能[J].復合材料學報, 2011, 28(5):162-167. Accession number: 20114514504202.
[16] 陳錦祥,關蘇軍,王勇.甲蟲前翅結構及其仿生研究進展[J].復合材料學報, 2010, 27(03):1-9.Accession number:20102813067912.
[15] JX. Chen, R. Hashimoto, Y. fukuyama, M. Matsushita, A. Ogawa, M. Osawa, T. Yokokawa H. Harada. Effects of the coordinates planes crystal orientation on the structural strength of single-crystal turbine vanes and blades. Journal of Solid Mechanics and Materials Engineering (JSMME) [J], 2006, 1(10):1262-1270.Accession number:20062810002450
[14] 陳, 橋本, 福山, 松下, 小河, 大沢, 橫川, 原田. 翼強度に及ぼす座標平面內(nèi)の単結晶方位の影響. 機論A[J], 2006, 72 (4):432-437.
[13] JX. Chen, R. Hashimoto, Y. Fukuyama, M. Matsusita, M. Osawa, H. Harada, T. Yokogawa, T. Yoshida. Effects of the Cross-Sectional In-Plane Crystal Orientation on the Structural Strength of Single-Crystal Turbine Vanes. 材料[J], 2006, 55(4):436-441.
[12] 陳, 小河, 橋本, 北條. 遠心力を受ける逆対稱積層動翼の捻りに及ぼす予捻り角度の影響. 機論A[J], 2005, 71 (706):913-918.
[11] 陳, 小河, 橋本, 吉田, 西澤, 福山, 橫川, 原田. タービン動靜翼の単結晶化による構造強度変化.材料, 2005, 54(3):251-256.
[10] 陳錦祥, 倪慶清, 李慶, 徐英蓮.“蜂窩-柱子”芯夾層輕質(zhì)仿生物復合材料結構.復合材料學報[J], 2005, 22(2):103-108.
[9] 陳錦祥, 倪慶清, 徐英蓮.甲蟲前翅結構中的優(yōu)化設計.復合材料學報[J], 2004, 21(5):83-87.
[8] 陳, 小河, 橋本, 吉田. 仮想タービンにおける熱応力解析のインターフェース構築及び応力評価. 日本ガスタービン學會誌, [J], 2004, 32(1):34-39.
[7] 陳錦祥, 倪慶清.甲蟲前翅中的三維復合材料結構.復合材料學報[J], 2003, 20(6):61-66.
[6] JX. Chen, Q-Q Ni, Y. Endo , M. Iwamoto. Distribution of the trabeculae in the fore-wing of horned beetle. Allomyrina Dichotoma (Linne)(Coleoptera:Scarabaeidae) [J].Insect Science, 2002, 9(1):55-61.
[5] 陳錦祥, 巖本正治, 倪慶清, 倉鋪憲.甲蟲上翅の根元破壊タイプとそのモデル解析.機論A[J], 2002, 68(666):364-369.
[4] JX. Chen, Q-Q Ni, Y. Endo, M. Iwamoto. Fine Structure of The Trabeculae in The Fore-wing of Allomyrina Dichotoma (Linne) and Prosopocoilus inclinatus. (Motschulskey) (Coleoptera:Scarabaeidae), Insect Science [J], 2001, 8(2):115-123.
[3] 陳錦祥, 巖本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲蟲上翅の積層構造とその力學特性.材料[J], 2001, 50(5): 455-460.
[2] 陳錦祥, 巖本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲蟲上翅の層間強化機構に関する一.考察[J], 機論A, 2001, 67(664): 273-279.
[1] 陳錦祥, 巖本正治, 倪慶清, 倉鋪憲, 齋藤憲司.甲蟲上翅の斷面構造とその最適性.材料[J], 2000, 49(4):407-412.